
 
 
 
 

 

 
OPTIMIZATION AND EVALUATION OF TREE ARRANGEMENT IN OPEN SPACE 

FOR URBAN HEAT ADAPTATION AND HEAT ISLAND MITIGATION 
 

 1  2  3 
Kunihiko FUJIWARA, Takashi ASAWA, Tomoki KIYONO 

 
We conducted optimization of tree arrangement to reduce the mean radiant temperature (MRT) and to increase transpiration, targeting an 

open space with no buildings around it and sunny summer weather. Comparisons between effective and ineffective arrangements in the 
solutions showed that the daily average MRT differed up to 7.5°C and the daily transpiration rate differed up to 20%, even when the same 
amount of trees were used. The solutions showed that distributed arrangements are effective for both reducing MRT and increasing 
transpiration, and that separation between trees in the east-west direction is more effective than separation in the north-south direction. 
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Urban trees as a heat adaptation measure by solar radiation shielding and as a heat island mitigation measure by 

transpiration are expected to improve the summer thermal environment. An increase in the amount of trees leads to an 

increase in the initial cost for tree planting and in maintenance costs such as pruning and irrigation. It is thus important 

when planning to green urban open spaces to consider the optimal tree arrangement to maximize the effect with the 

minimum amount of trees. However, very few studies have discussed the effect of the tree arrangement on the thermal 

environment. Therefore, we carried out tree arrangement optimization to both minimize the summer mean radiant 

temperature (MRT) as an urban heat adaptation measure and maximize the transpiration rate as a heat island 

mitigation measure. Based on optimization, we showed to what extent the MRT and the transpiration rate change by 

the arrangement and what kind of features of the arrangement contribute to improving the effect of the trees. 

The target of optimization was an open space with no buildings around it with a 36 m × 36 m tree arrangement area 

and a 12 m × 12 m evaluation area in the center. The design variable of optimization was the two-dimensional tree 

arrangement in the 36 m × 36 m area. To derive tree arrangements with the maximum effect by the minimum number 

of trees, we conducted optimization to minimize both MRT and vegetation coverage ratio (number of trees) in the 

evaluation area as the objective functions, focusing on urban heat adaptation. We also conducted optimization to 

maximize the transpiration rate and minimize the vegetation coverage ratio in the evaluation area, focusing on heat 

island mitigation. We calculated the MRT and the transpiration rate using typical sunny summer weather in Tokyo. We 

conducted numerical optimization and derived Pareto solutions. 

As a result, we obtained the following findings for typical sunny summer sunny weather in Tokyo at a location with 

no building around it. Comparisons between the effective and ineffective tree arrangements obtained by optimization 

showed the daily average MRT differed up to 7.5°C and the amount of transpiration differed up to about 20%, even 

when using the same amount of trees. This result shows that tree arrangement could have a non-negligible impact on 

the effects of urban heat adaptation and heat island mitigation. The arrangements of the optimal solutions for the MRT 

and the transpiration rate showed the same tendency, suggesting that similar tree arrangements could realize the 

maximization of effects for both urban heat adaptation and heat island mitigation. The tree arrangement of the optimal 

solutions showed that distributed arrangements with separation between trees are effective for reducing the MRT and 

increasing the transpiration rate, and that separation between trees in the east-west direction is more effective than 

separation between trees in the north-south direction. The difference of the MRT and the transpiration rate between 

effective and ineffective arrangements was large when the vegetation cover ratio was around 50%, suggesting that 

consideration to tree arrangement at the time of green planning is particularly important. The gradient of the Pareto 

solutions in the evaluation space was smaller when the vegetation coverage ratio was larger than 50%, suggesting that 

the cost performance of urban heat adaptation and heat island mitigation by trees decreased above a 50% vegetation 

coverage ratio. 
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