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Abstract. Buildings use a large amount of energy, depending on the climate. To design buildings with high 
energy and thermal performance in the future, it is necessary to use weather data that reflect future climatic 
information. Some future weather files for building simulations have been developed. However, these 
datasets are based on different predictions, and each future weather file has a different creation process. 
Such methodological differences may lead to differences in predicting the energy and thermal performance 
of buildings. Understanding the characteristics of each data type is necessary for its appropriate use. 
However, limited information is available for properly utilizing future weather data for building simulations. 
This study aims to provide information on the characteristics of future weather data for better utilization. 
After thoroughly reviewing the existing data and creation methods, we propose a framework for 
understanding future weather data based on their creative process. We collected five types of future weather 
datasets available in Japan and compared their characteristics. One of these datasets is the future weather 
dataset based on climate information provided by the National Institute for Environmental Studies (NIES). 
We confirmed the degree of variation in each weather element and predicted cooling/heating demand using 
future weather data available in Japan. 

1 Introduction 

Climate change is progressing as a result of CO2 
emissions by humans. Buildings have generally been 
used for decades, and building longevity is critical to 
reducing CO2 emissions over their life cycle. Therefore, 
considering climate change is essential for adequately 
assessing thermal comfort in buildings and 
implementing a climate-adaptive design in a changing 
climate. Various future weather files have been 
developed for building simulations that reflect climate 
change to properly consider climate change in the 
building design process.  
 In Japan, Soga [1] developed future reference 
weather years for building simulation. Expanded 
AMeDAS Reference Weather Year (EA-RWY) -based 
future weather files were published in Japan. Various 
global attempts have been detailed in a review by 
Nielsen and Kolarik [2]. For globally available data, 
CCWorldWeatherGen, developed by the University of 
Southampton in the UK, can generate future weather 
data from the current reference year weather data at 
every place in the world [3]. Moreover, METEONORM 
version 8 software allows users to generate future 
weather files for any location [4]. WeatherShift, 
developed by Arup and Argos Analytics, can generate 
future weather files for building simulations for any 
country in the world [5]. Various organizations and 
researchers are developing future weather data for 
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building simulations. It is important to note that future 
weather files employ different future climate 
information and creation methodologies. Therefore, 
future weather data for building simulations contain 
uncertainties owing to their creation process in addition 
to the uncertainties contained in climate change 
predictions. To use future weather data appropriately, it 
is essential to elucidate the uncertainties and their 
characteristics, depending on the applied methods. 
However, there is insufficient information to understand 
the characteristics and uncertainties of future weather 
data. Each future weather file is used ambiguously for 
impact assessment. 

There is no unified framework for understanding 
methodologies for generating future weather files. Some  
of the proposed frameworks for understanding the 
methodologies for future weather data are as follows. 
Ramon [6] identified three methods: (1) dynamical 
downscaling, (2) stochastic weather generators, and (3) 
morphing. Nielsen and Kolarik [2] stated that there are 
two methods for increasing the temporal and spatial 
resolution required for building simulations: (1) 
dynamical downscaling and (2) statistical downscaling. 
They classified the method of morphing as a type of 
statistical downscaling. While these frameworks have 
some common points, some confusion can be observed. 
This confusion can be clarified by asking the following 
questions: In the above frameworks, dynamical 
downscaling is usually classified as a method different 

  
E3S Web of Conferences 396, 05014 (2023) https://doi.org/10.1051/e3sconf/202339605014
IAQVEC2023

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http ://creativecommons.org/licenses/by/4.0/). s



 

 

from morphing. However, if we use dynamically 
downscaled Global Climate Models (GCMs) data as 
future climate information in the morphing method, 
which method should we consider was used to generate 
future weather data? This question has no clear answer 
based on the framework described above. 

This paper presents a framework for organizing 
future weather data by reviewing existing weather files 
and the methodologies used to create them. It appears 
that the aforementioned confusion is due to the 
confusion in positioning the "downscaling" process. 
Based on the proposed framework, we will attempt to 
organize future weather data available in Japan 
systematically. In this arrangement, we included future 
weather data developed by the Takenaka Corporation 
based on the climate information provided by the 
National Institute for Environmental Studies (NIES) [7]. 
Furthermore, we analyzed the meteorological elements 
of future weather files to understand the characteristics 
and uncertainties of the currently available weather data. 
Finally, simulations for estimating the heat load were 
conducted for a Japanese standard housing with each 
future weather dataset. Based on the simulation results, 
we confirmed the combined characteristics and 
variabilities of future weather files. 

2 Review of future weather data for 
building simulations 

2.1 Process of developing future weather files  

Various organizations have developed future weather 
data, and various methods have been used to create them. 
As mentioned above, there is no comprehensive 
framework for understanding creation methodologies. 
However, there are three common processes for 
generating future weather data can be used in building 
simulations: future climate prediction by GCMs, 
downscaling of GCM outputs, and generation of hourly 
time-series values of future weather conditions. 
Understanding the characteristics of future weather data 
from these processes is crucial because the differences 
in each process result in differences in the characteristics 
of future weather data. Figure 1 shows the generation 
processes for future weather data. The process is 
described as follows.  

2.2 Future climate information  

Regardless of the methodology, future climate 
information is necessary to generate weather data for 
building simulations. The future climate is predicted by 
GCMs with CO2 emission scenarios, and the future 
information to be adopted will largely determine the 
characteristics of future weather data. Future weather 
data that reflect a single GCM prediction and scenario, 
such as CCWorldWeatherGen, have the advantage that 
the nature of the generated data is clear. However, 
because of the uncertainty associated with GCM 
predictions, it is preferable to consider climate 
information from multiple GCMs. Such a strategy is 
applied in WeatherShift and METEONORM 8.  

2.3 Downscaling climate information  

GCMs have a coarse spatial resolution of approximately 
100 km per mesh. Using downscaled GCM data with 
finer spatial and temporal resolutions is preferred for 
creating future weather data for building simulations. 
Downscaling methods can be broadly classified into 
statistical and dynamic methods. Statistical downscaling 
methods derive relationships between observation 
points based on historical data. The GCM information is 
downscaled based on statistical relationships. Statistical 
downscaling methods are reliable because they are 
based on actual observations; however, it is uncertain 
whether the statistical relationships from the past to the 
present are applicable in the future. Dynamic 
downscaling is conducted with the regional climate 
model (RCM), which uses GCM climate projections as 
boundary conditions to produce more detailed data with 
high spatial and temporal resolution.  
 Morphing is generally considered a downscaling 
method in architectural research. This is because 
Belcher [8] described morphing as a downscaling 
method. However, in climate research, statistical 
downscaling does not include morphing. The original 
purpose of downscaling was to add locality information 
to the GCM. However, the morphing procedure does not 
add any information to the climate information itself. 
Whether the morphing method is considered a 
downscaling method is a matter of personal preference, 
but the authors think it is more reasonable to understand 
the morphing method as a method for generating hourly 
time-series data sets, as described below. 

2.4 Generating hourly time-series data  

Building simulations such as heat load estimations 
require annual meteorological data for hourly time-
series values. However, because most GCM outputs are 
often published as daily values, a method for generating 
hourly time-series data is required to develop future 
weather data. Methods for generating time-series 

 
Fig. 1. Steps for generating future weather files 
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meteorological data sets can be broadly classified into 
three categories: (1) statistical manipulation, (2) 
probabilistic weather generation, and (3) direct use of 
dynamically downscaled outputs (Figure 1).  
 “Statistical manipulation” is the most widely adopted 
method, in which current typical weather year data is 
statistically manipulated using future climate 
information to generate future weather data. Morphing 
is the most widely used method for this purpose [2]. In 
this method, the climate change values are calculated 
between the present and future climate data predicted by 
GCMs, and by adding or multiplying these values to the 
current weather data, future weather files are generated. 
Future weather data based on this method are reliable 
because their basic characteristics are based on current 
base weather data. However, it only considers the 
statistical values of climate change and ignores the 
relationship between the meteorological components in 
creation. Given these characteristics, morphing is the 
best method for generating future climate data for 
assessing average future conditions or changes. More 
sophisticated statistical manipulation methods, such as 
the “delta change,” which allows for a range of climate 
change values, have also been proposed in recent years. 
The future EA-RWY has applied this new statistical 
manipulation method.  

The “probabilistic weather generation” is a 
method for creating future weather data by directly 
using an output-stochastic weather generator. Because 
stochastic weather generation is generally positioned as 
a statistical downscaling method, future weather data 
based on this method must include the process of 
statistical downscaling. Future weather data generated 
by this method are expected to reproduce various 
conditions in a probabilistic manner. METEONORM 8 
uses this method. Future reference weather years based 
on the UKCP09 weather generator [9] have been 
published in the UK. 
  Finally, there is a “direct use of dynamically 
downscaled outputs” method. This method has the 
advantage of considering the climate information added 
by the RCM. It has not been widely used because of its 
high computational cost and the difficulty of multi-
ensemble modeling. However, in the UK, as dynamical 
downscaling data have been published in the European 
Coordinated Regional Downscaling Experiment 
(EURO-CORDEX) [10], future weather data based on 
this method will increase. As discussed by Nik [11], this 
method is useful for assessing extreme weather 
conditions. However, Tootkaboni et al. [12] reported 
that future weather data generated by this dynamic 
method tend to show different future trends than other 
future weather data, suggesting that the climate 
information added by the RCM should be treated with 
caution. Furthermore, the RCM output often includes 
systematic bias; thus, Arima et al. [13] recommended 
the implementation of bias correction in this method. 
  The three processes presented in this study for 
creating future weather data determine its characteristics. 
All future weather data can be comprehensively 
understood and organized in terms of these processes 
(see Figure 1).  

3 Future weather data available in 
Japan and its characteristics 

3.1 Future weather data available in Japan  

While various types of future weather data have been 
developed around the world, this study focuses on five 
types of future weather data available in Japan:  
Expanded AMeDAS Future Reference Weather Year, 
CCWorldWeahterGen, WeatherShift, METEONORM 8, 
and NIES-based future weather data. The last dataset is 
not publicly available, but NIES data are publicly 
available. The NIES data were statistical downscaled to 
GCM outputs, and we used predictions by MIROC6h 
and MRI-ESM2-0. We conducted a statistical 
manipulation similar to morphing to generate an hourly 
series of NIES-based future weather data.  

The following sections present the statistical 
characteristics of each meteorological element for each 
future weather dataset. Of the available future weather 
files, this study employed data based on the scenarios of 
RCP 8.5 and SRES A2 as high-emission scenarios and 
RCP 4.5 and SRES A1B as medium-emission scenarios. 
We classified the 2020s/2030s as the near future, 
2050s/2060s as the mid-term future, and the 
2080s/2090s as the long-term future, and compared the 
characteristics of the data for the relevant periods.  

3.2 Temperature characteristics 

Figure 2 shows the annual average temperature and 
cooling/heating degree days for each future weather data 
set for Tokyo. Figure 1 (a) shows the results for the high-
emission scenarios, and Figure 1 (b) shows the results 
for the medium-emission scenarios. The cooling degree 
days (Dc24) and heating degree days (Dh18) were 
calculated with set temperatures of 24 °C and 18 °C, 
respectively. The temperature-related absolute values of 
each future weather dataset were similar, and the 
expected balance between Dc24 and Dh18 was not 
significantly different. Currently, Dc24 is smaller than 
Dh18 in Tokyo. However, the balance changes 
gradually, and at the end of the 21st century, Dc24 and 
Dh18 will be balanced in the high-emission scenario 
(Figure 1a); however, Dh18 will still be more significant 
in the medium-emission scenario (Figure 1b). Figure 2 
depicts the annual average temperature and degree days 
change values from the current period. This figure also 
shows no significant differences in the temperature 
characteristics among future weather data. In Tokyo, the 
high-emission scenario showed an increase of 
approximately 4 °C (Figure 2a). In comparison, the 
medium-emission scenario showed an increase of 
approximately 2 °C (Figure 2b).  

3.3 Locality of temperature increase 

Figure 4 shows the long-term future annual mean 
temperature and cooling and heating degree days (Dc24 
and Dh18) at eight locations in Japan. In all locations, 
the annual mean temperatures of future weather data are 
similar, and the balance between cooling and heating 
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degree days is expected to be similar. In the long-term 
future, based on the high-emission scenario, Dc24 and 
Dh18 are balanced in all regions except Sapporo and 
Sendai, which are located in high-latitude areas. In 
contrast, in the medium-emission scenario, Dh18 is still 
larger than Dc24 in regions other than Kagoshima at low 
latitudes. Figure 5 shows the future long-term changes 

in the annual mean temperature, and cooling and heating 
degree days. Among future weather data, a gap in the 
annual mean temperature increase of approximately 
1 °C for the high-emissions scenario and 0.5 °C for the 
medium-emissions scenario exists. Both future weather 
datasets include similar regional trends, with higher 
temperature increases projected at higher latitudes.  

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 2. Yearly average temperature and cooling/heating degree days (Dc24, Dh18) at Tokyo 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 3. Future increase/decrease in yearly average temperature and cooling/heating degree days (Dc24, Dh18) at Tokyo 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 4. Yearly average temperature and cooling/heating degree days (Dc24, Dh18) at seven places (long-term future) 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 5. Future increase/decrease in yearly average temperature and cooling/heating degree days (Dc24, Dh18) at seven places 
(long-term future) 
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lower increases for lower latitudes. 

  
(a) High-emission scenarios (RCP8.5, SRES A2) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 6. Monthly average temperature and its change at Tokyo in long-term future 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 7. Monthly average absolute humidity and its change at Tokyo in long-term future 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 8. Monthly averaged daily-cumulative global solar radiation and its change at Tokyo in long-term future 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 9. Monthly averaged daily-cumulative infrared sky radiation and its change at Tokyo in long-term future 

 

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [℃
]

M
on

th
ly

 a
ve

ra
ge

d 
te

m
pe

ra
tu

re
 [℃

]
WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) CCWorldWeatherGen (Change)

WeatherShift (RCP8.5, 2090s) METEONORM8 (RCP8.5, 2090s)

NIES-based Weather (RCP8.5, 2090s) CCWorldWeatherGen (A2, 2080s)

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [ ℃
]

M
on

th
ly

 a
ve

ra
ge

d 
te

m
pe

ra
tu

re
 [ ℃

]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) ExpandedAMeDAS (Change)

WeatherShift (RCP4.5, 2090s) METEONORM8 (RCP4.5, 2090s)

NIES-based Weather (RCP4.5, 2090s) ExpandedAMeDAS (A1B, 2086)

0

2

4

6

8

10

0

5

10

15

20

25

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [g/kg]

M
on

th
ly

 a
ve

ra
ge

d 
ab

so
lu

te
 h

um
id

ity
 [g

/k
g]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) CCWorldWeatherGen (Change)

WeatherShift (RCP8.5, 2090s) METEONORM8 (RCP8.5, 2090s)

NIES-based Weather (RCP8.5, 2090s) CCWorldWeatherGen (A2, 2080s)

0

2

4

6

8

10

0

5

10

15

20

25

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [g/kg]

M
on

th
ly

 a
ve

ra
ge

d 
ab

so
lu

te
 h

um
id

ity
 [g

/k
g]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) ExpandedAMeDAS (Change)

WeatherShift (RCP4.5, 2090s) METEONORM8 (RCP4.5, 2090s)

NIES-based Weather (RCP4.5, 2090s) ExpandedAMeDAS (A1B, 2086)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

6

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [kW
h/(m

2day)]

D
ay

 c
um

ul
at

iv
e 

gl
ob

al
 s

ol
ar

 ra
di

at
io

n 
[k

W
h/

(m
2

da
y)

]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) CCWorldWeatherGen (Change)

WeatherShift (RCP8.5, 2090s) METEONORM8 (RCP8.5, 2090s)

NIES-based Weather (RCP8.5, 2090s) CCWorldWeatherGen (A2, 2080s)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

6

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [kW
h/(m

2day)]

D
ay

 c
um

ul
at

iv
e 

gl
ob

al
 s

ol
ar

 ra
di

at
io

n 
[k

W
h/

(m
2

da
y)

]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) ExpandedAMeDAS (Change)

WeatherShift (RCP4.5, 2090s) METEONORM8 (RCP4.5, 2090s)

NIES-based Weather (RCP4.5, 2090s) ExpandedAMeDAS (A1B, 2086)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

2

4

6

8

10

12

14

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [kW
h/(m

2day)]

Da
y 

cu
m

ul
at

iv
e 

in
fr

ar
ed

 s
ky

 ra
di

at
io

n 
[k

W
h/

(m
2

da
y)

]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) CCWorldWeatherGen (Change)

WeatherShift (RCP8.5, 2090s) METEONORM8 (RCP8.5, 2090s)

NIES-based Weather (RCP8.5, 2090s) CCWorldWeatherGen (A2, 2080s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

2

4

6

8

10

12

14

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Change [kW
h/(m

2day)]

Da
y 

cu
m

ul
at

iv
e 

in
fr

ar
ed

 s
ky

 ra
di

at
io

n 
[k

W
h/

(m
2

da
y)

]

WeatherShift (Change) METEONORM8 (Change)

NIES-based Weather (Change) ExpandedAMeDAS (Change)

WeatherShift (RCP4.5, 2090s) METEONORM8 (RCP4.5, 2090s)

NIES-based Weather (RCP4.5, 2090s) ExpandedAMeDAS (A1B, 2086)

  
E3S Web of Conferences 396, 05014 (2023) https://doi.org/10.1051/e3sconf/202339605014
IAQVEC2023

5



 

 

CCWorldWeatherGen reflects significant regional 
differences compared to other future weather data, with 
a rise of 5.5 °C in Sapporo and 3.4 °C in Kagoshima in 
high-emission scenarios. However,  
CCWorldWeatherGen does not employ downscaled 
climate information, so the predicted regional 
differences should be handled cautiously.  

3.4 Characteristics of other weather elements 

Figures 6–9 depict the monthly average of each weather 
element and its change in the long-term future in Tokyo. 
For temperature in Figure 6, there was no significant 
seasonality in temperature change; however, for 
absolute humidity in Figure 7, a higher increase was 
predicted for the summer season. While there are no 
significant differences in absolute values or changes in 
temperature and absolute humidity among future 
weather data, significant differences can be observed in 
global solar radiation and atmospheric radiation. For 
example, in Figure 8 (a), CCWorldWeatherGen shows a 
decreasing trend in global solar radiation. In contrast, 
the other future weather data show an increasing trend. 
For the medium-emission scenario in Figure 8 (b), the 
Expanded AMeDAS future weather data predict little 
change. In Figure 9, CCWorldWeatherGen predicts the 
greatest increase in atmospheric radiation for high-
emissions scenarios, with an annual average increase of 
1.2kWh/(m2day), while WeatherShift considers no 
change. For the medium-emissions scenario in Figure 9 
(b), Expanded AMeDAS considers the most substantial 
change. Because atmospheric radiation is an essential 
mechanism of global warming, the amount of change is 
not expected to be significantly small in some future 
weather data. These differences in the treatment of 
climate change among the future weather data are likely 
to affect the predicted heat load.  

4 Future prediction of thermal heat load 
for standard housing in Japan 

Cooling and heating load calculations were performed 
by targeting a standard Japanese house model in Tokyo 
(lat. 35.69°, lon. 139.76°) using five types of future 
weather data available in Japan. By confirming the 
differences in the predicted heat load, we can confirm 
the combined characteristics of the future weather data. 

4.1 Simulation conditions  

4.1.1 Software for thermal heat load simulation 

The thermal environment of residential building for heat 
and mass transfer (THERB for HAM) [14] predicts 
current and future cooling and heating loads in a typical 
Japanese house.  

4.1.2 Future weather files 

Five types of future weather files were used in these 
simulations: CCWorldWeahterGen, WeatherShift, 
METEONORM 8, Extended AMeDAS (EA) Future 
Weather Data 2086, and NIES-based future weather 
data. Similar to the previous section, this section uses 
data based on RCP8.5 and SRES A1 as high-emission 
scenarios and RCP4.5 and SRES A1B as medium-
emission scenarios. EA-RWY (1995) and EA-RWY 
(2010) were used as base-current weather year data for 
the CCWorldWeatherGen and NIES-based future 
weather data, respectively. JGMY was used as the base 
current weather data for WeatherShift. As WeatherShift 
has a selectable climate change risk rate for users, we 
used the one created with a 50% risk. 

4.1.3 Building model 

Simulations were conducted targeting a typical wooden 
house in Japan, as defined by the Institute for Built 
Environment and Carbon Neutral for SDGs (IBECs). 
The family consisted of a couple and two children. The 
floor plan of the building model is shown in Figure 10. 
The total floor area of the model was 117.5 m2, and the 
ratio of openings to the area was 10 %. Table 1 presents 
the thermal properties of each part of the model. The 
average thermal transmittance of the building envelope 
was 0.87 W/(m2K), and the building envelope 
performance met the current energy conservation 
standards under the Japanese energy conservation law. 
Humidity was considered in terms of the outside air and 
internal load without considering the absorption and 
emission in the building frames. Air conditioning was 
set at 27 °C for cooling, with dehumidification at 60% 
from May to September, and 20 °C for heating during 
the other seasons. Air conditioning and ventilation 
settings are listed in Table 2. Internal heat generation 
was given on schedule, and the human body load was 
considered 64 W and 59 g/h per person. 

 
(a) first floor plan  

(area 65.4 m2, volume 163 m3) 
(b) second floor plan 
(area 52.1 m2, volume 125 m3) 

 
Fig. 10. The floor plans of standard housing model 

(Each of the 12 rooms has each air-node and is subject to air conditioning.) 

 

Table 1. Thermal properties of a model house 
Heat transmission 
coefficient [W/(m2K)] 

Exterior wall 0.65 
Window 3.67 
Floor 0.71 
Ceiling (attic floor) 0.53  
Roof (first floor) 0.53 

Solar absorptance [-] Outdoor surface 0.70 
Solar transmittance [-] Window 0.82  

Table 2. Air conditioning and ventilation settings 
Content Room Setting 
Cooling All rooms 27 ˚C/ 60 % for 24 hours  
Heating All rooms 20 ˚C for 24 hours 
Ventilation All rooms 0.56 times/hour for 24 hours 

Under floor/ attic space 20 times/hour for 24 hours 
Bath & Restroom, Kitchen Local ventilatin on a schecule 
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4.2 Future heat load of a standard house in 
Japan 

Figure 11 shows the sensible cooling and heating loads 
predicted using the present and future weather data. The 
predicted balance between cooling and heating loads 
was relatively similar among the weather data when 

comparing the same periods. While the sensible heating 
load is higher than the sensible cooling load in the 
current period, based on the high-emission scenario, the 
sensible cooling load is predicted to be higher than the 
sensible heating load in the future. The absolute 
magnitude of the final sensible heating/cooling load 
varies by approximately 50 MJ/m2 in the future weather 
data. These differences in the absolute heat load are 
caused by differences in the characteristics of the base 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 11. Sensible cooling/heating load per year at Tokyo 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 12. Future increase/decrease in sensible cooling/heating load per year at Tokyo 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 13. Latent cooling load per year at Tokyo 

  
(a) High-emission scenarios (RCP8.5, SRES A2) (b) Medium-emission scenarios (RCP4.5, SRES A1B) 

Fig. 14. Future increase in latent cooling load per year at Tokyo 
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current weather data or how future climate information 
is treated. Figure 12 shows the future changes in sensible 
heating and cooling loads. Under the high-emissions 
scenario, the largest change was predicted by 
CCWorldWeatherGen. Part of this higher increase was 
presumably because CCWorldWeatherGen data 
reflected the strongest increase in atmospheric radiation. 
However, the changes in sensible heating and cooling 
loads show generally similar trends (Figure 12), 
indicating that many of the absolute values in future 
weather data are derived from the difference in and 
selection of base current weather data.  
 Figure 13 shows the latent cooling 
(dehumidification) load predicted by the current and 
future weather data, and Figure 14 shows the amount of 
change. Similar trends in the latent cooling load can be 
observed in absolute values and the amount of change 
predicted among future weather data. This trend 
difference can be interpreted from the characteristics of 
the absolute humidity in Figure 7. For example, 
CCWorldWeatherGen predicted the strongest increase 
in latent heat load (Figure 13a). Future weather data 
showed the largest change in absolute humidity in the 
high-emission scenario (Figure 7a). Conversely, the 
NIES-based future weather data in Figure 13 (b) 
predicted the lowest latent heat load increase. This 
weather data had a slightly smaller increase in absolute 
humidity than the other future weather data (Figure 7b).  

5 Conclusion 

This study examined future weather data and proposed 
a framework for understanding it based on how it is 
generated. Future weather data can be systematically 
understood in terms of the applied GCMs and scenarios, 
downscaling of GCM outputs, and methods for 
generating hourly time-series data. Furthermore, we 
analyzed the meteorological elements and conducted 
heat load simulations to confirm the characteristics and 
uncertainty of future weather data available in Japan. 
While temperature and absolute humidity showed 
similar increasing trends, there were different global 
solar radiation and atmospheric radiation trends. 
Consequently, differences appear in the predicted heat 
loads among the future weather data. Nevertheless, 
similar trends in changes in heating and cooling loads 
were predicted for all future weather data. There were 
differences in the absolute predicted values of heat load; 
hence, attention should be paid to the characteristics of 
the base-current weather data to justify these differences. 

Future climate information is publicly available in 
many countries, and climate data from the NIES is 
available in Japan. With the development of future 
weather data, it is necessary to improve our 
understanding of their characteristics, and we hope that 
our study will contribute to this endeavor. 
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